Tuesday, May 23, 2017

How you’ll grow up, and how you’ll grow old

By Nathan Ahlgrim

Nathan Ahlgrim is a third year Ph.D. candidate in the Neuroscience Program at Emory. In his research, he studies how different brain regions interact to make certain memories stronger than others. In his own life, he strengthens his own brain power by hiking through the north Georgia mountains and reading highly technical science...fiction.

An ounce of prevention can only be worth a pound of cure if you know what to prevent in the first place. The solution to modifying disease onset can be fairly straightforward if the prevention techniques are rooted in lifestyle, such as maintaining a healthy diet and weight to prevent hypertension and type-II diabetes. However, disorders of the brain are more complicated – both to treat and to predict. The emerging science of preclinical detection of brain disorders was on display at Emory University during the April 28th symposium entitled, “The Use of Preclinical Biomarkers for Brain Diseases: A Neuroethical Dilemma.” Perspectives from ethicists, researchers conducting preclinical research, and participants or family members of those involved in clinical research were brought together over the course of the symposium. The diversity of panelists provided a holistic view of where preclinical research stands, and what must be considered as the field progresses.

Saturday, May 13, 2017

Happy 15th Birthday, Neuroethics!

By Henry T. Greely

Henry T. (Hank) Greely is the Deane F. and Kate Edelman Johnson Professor of Law and Professor, by courtesy, of Genetics at Stanford University. He specializes in ethical, legal, and social issues arising from advances in the biosciences, particularly from genetics, neuroscience, and human stem cell research. He directs the Stanford Center for Law and the Biosciences and the Stanford Program on Neuroscience in Society; chairs the California Advisory Committee on Human Stem Cell Research; is the President Elect of the International Neuroethics Society; and serves on the Neuroscience Forum of the National Academy of Medicine; the Committee on Science, Technology, and Law of the National Academy of Sciences; and the NIH Multi-Council Working Group on the BRAIN Initiative. He was elected a fellow of the American Association for the Advancement of Science in 2007. His book, THE END OF SEX AND THE FUTURE OF HUMAN REPRODUCTION, was published in May 2016. 

Professor Greely graduated from Stanford in 1974 and from Yale Law School in 1977. He served as a law clerk for Judge John Minor Wisdom on the United States Court of Appeals for the Fifth Circuit and for Justice Potter Stewart of the United States Supreme Court. After working during the Carter Administration in the Departments of Defense and Energy, he entered private law practice in Los Angeles in 1981. He joined the Stanford faculty in 1985. 

Fifteen years ago, on May 13, 2002, a two-day conference called “Neuroethics: Mapping the Field” began at the Presidio in San Francisco. And modern neuroethics was born. That conference was the first meeting to bring together a wide range of people who were, or would soon be, writing in “neuroethics;” it gave the new field substantial publicity; and, perhaps most importantly, it gave it a catchy name. 

Tuesday, May 9, 2017

Reading into the Science: The Neuroscience and Ethics of Enhancement

By Shweta Sahu

Image courtesy of Pexels.
I was always an average student: I was good, just not good enough. I often wondered what my life and grades would be like if I’d had a better memory or learned faster. I remember several exams throughout my high school career where I just could not recall what certain rote memorization facts or specific details were, and now in college, I realize that if I could somehow learn faster, how much time would I save and be able to study even more? Would a better memory have led me to do better on my exams in high school, and would my faster ability to learn new information have increased my GPA?

Such has been the question for years now in the ongoing debates of memory enhancement and cognitive enhancement, respectively. I’m not the only student to have ever felt this way and I’m sure I won’t be the last. Technology and medicine seem to be on the brink of exciting new findings, ones that may help us in ways we’ve never before thought imaginable.

Tuesday, May 2, 2017

The [Sea] Monster Inside Me

By Sunidhi Ramesh

A side-by-side comparison of a sea horse and the human
hippocampus (Greek for sea monster).
(Image courtesy of Wikimedia Commons.)
In 1587, Venetian anatomist Julius Aranzi gave a name to the intricate, hallmark structure located in the medial temporal lobe of the human brain—the hippocampus, Greek for sea monster.

The hippocampus, often said to resemble a sea horse, has since been identified as a key player in the consolidation of information (from short-term memory to long-term memory) and in the spatial memory that allows for our day-to-day navigation. Because of its importance in learning and memory, hippocampal damage is often a culprit in varying forms of dementia, Alzheimer’s disease, short-term memory loss, and amnesia.

Since its discovery, the hippocampus has been the subject of extensive research ranging from understanding diet and exercise as cognitive modulators to demonstrating the three-step encoding, storage, and retrieval process that the structure so consistently performs. In this time, it has become apparent that the hippocampus is not only a vital structure for normal human functioning, but it is also necessary to what makes us uniquely human.